COMBINATIONS:C....
 MODULE-8

No. of lines that can be drawn

- When $n=4$, no. of lines drawn $=3+2+1=6$
- When $\mathrm{n}=5$, no. of lines drawn

$$
=4+3+2+1=10
$$

- When $n=6$, no. of lines drawn

$$
=5+4+3+2+1=15
$$

-When $n=10$. no. of lines drawn

$$
=9+8+7+6+5+4+3+2+1=45
$$

So, In general, when there are ' n ' points on a circle, no. of lines drawn
$=(n-1)+(n-2)+(n-3)+\ldots . .+3+2+1$
= sum of first ($n-1$) natural numbers
$=\frac{n(\mathrm{n}-1)}{2}=\mathrm{m}_{2}$
Q) How many chords can be drawn through 21 points on a circle?

Ans) There are 21 points on the circle. Since only one chord can be drawn by joining 2 distinct points, so the required no. of chords is:

$$
{ }^{21} c_{2}=\frac{21!}{19!2!}=\frac{21 \times 20}{2}=210
$$

If there are 38 points ????

Number of diagonals in apolygon.....

- Now.... If $\mathrm{n}=8$, then,

No. of diagonals =

For $n=20$, number of diagonals will be ? ???

- So, in general, if a polygon has ' n ' sides, then the number of diagonals is given by,

$$
{ }^{\mathrm{m}} \mathrm{C}_{2}-\mathrm{m}
$$

Let's consider an Example......
There are 4 marker pens
selection of a marker $\rightarrow 4$ ways selection of a fruit $\rightarrow 3$ ways
$\square \mathrm{P}_{1}$
 and 3 fruits

? In how many different ways can one marker AND one fruit be selected? (From both) \rightarrow No. of selections $=4 \times 3=12 \quad\left[\begin{array}{c}P_{1} A, P_{2} A, P_{3} A, P_{4} A, P_{1} B, P_{2} B, P_{3} B, \\ P_{4} B, P_{1} C, P_{2} C, P_{3} C, P_{4} C\end{array}\right]$ using FPC
$?$ In how many different ways can one marker OR one fruit be selected? (From any)

$$
\text { No. of selections }=4+3=7 \quad\left[P_{1}, P_{2}, P_{3}, P_{4}, A, B, C\right]
$$

Find the number of ways of choosing 4 cards from a deck of 52 playing cards? In how many of these

No. of ways of choosing 4 cards from a deck $={ }^{52} \mathrm{C}_{4}$
(i) four cards are of the same suit:

$$
\begin{aligned}
& ={ }^{13} \mathrm{C}_{4}+{ }^{13} \mathrm{C}_{4}+{ }^{13} \mathrm{C}_{4}+{ }^{13} \mathrm{C}_{4} \\
& =4 x \frac{13!}{4!9!}=2860 .
\end{aligned}
$$

(ii) four cards belong to four different suits:

$$
={ }^{13} c_{1} \times \int_{6}^{13} c_{1}{ }^{13} c_{1} \times 13 c_{1}=13^{4}
$$

(iii) two are red cards and two are black cards:

$$
={ }^{26} C_{2} \times{ }^{26} C_{2}=105625
$$

$$
={ }^{26} C_{4}+{ }^{26} C_{4}=2 \times \frac{26!}{4!22!}=29900
$$

(v) all four are face cards:

$$
={ }^{12} C_{4}=\frac{12!}{4!8!}=495
$$

Face cards are King + Queen + Jack
So, Total Face cards $=3 \times 4=12$ cards
(vi) there is exactly one ace:

$$
={ }^{4} C_{1} x^{48} C_{3}=4 \times \frac{48!}{45!3!}=69184
$$

POLL QUESTION.....

- A polygon has 27 diagonals. Find the number of its sides.

$$
\text { (A) } 6
$$

(B) 7 (C) 8
(D) 9

HOMEWORK QUESTIONS.....

1) A polygon has 44 diagonals. Find the number of its sides.
2) How many triangles can be formed by joining the vertices of an octagon?
3) How many chords can be drawn through 28 points on a circle?
4) Twelve persons meet in a room and each shakes hand with all others. Find the number of handshakes.
5) Determine ' n ' if ${ }^{2 n} c_{3}:{ }^{n} c_{3}=11: 1 \quad$ 6) Find ' n ' if $\quad{ }^{24} c_{n}={ }^{24} C_{2 n+3}$

ANSWERS:

1) 11
2) 56
3) 378
4) 66
5) 6
6) 7
